

BAMFIELD WATER COMMITTEE MEETING MONDAY, JANUARY 18, 2016, 5:00 PM

Bamfield Volunteer Fire Department Hall, 352 Pachena Road, Bamfield, BC

AGENDA

1. <u>CALL TO ORDER</u>

PAGE #

Recognition of Traditional Territories.

2. <u>APPROVAL OF AGENDA</u>

(motion to approve, including late items required 2/3 majority vote)

3. <u>REPORTS</u>

a.	Financial Report - December 2015	
b.	GILT Breakdown - Federal Buildings	
с.	Update to Underwater Inspection - J. Mass (Verbal)	2
d.	Treatment Plant - Costing	3
e.	Future Water Tolls (Discussion)	
f.	Huu-ay-aht First Nations Interest in Water Treatment Plant Progress	4
	(Discussion)	
g.	Turbidity Meter Cost Estimates	
h.	South Bamfield Road Subdivision - Status & Requirement to Proceed	
	M. Irg (Verbal)	5-21
i.	2016 Budget - Capital/Operations	
j.	Watershed Update - Island Timberlands Meeting - A. McGifford (Verbal)	
k.	Water Contractor Renewal of Contract (Discussion)	22-23

THAT the Bamfield Water Advisory Committee receives Reports a-k.

4. LATE BUSINESS

(requires 2/3 majority vote)

5. <u>ADJOURN</u>

2015 Budget & YTD as of January 12, 2016

<u>Revenue</u>

	В	udget 2015	YTD 2015
Grants in Lieu of Taxes	\$	500	\$ -
Overdue interest	\$	-	\$ 537
Discounts taken	\$	-	\$ 70
Water connection fees	\$	-	\$ 50
Prior years surplus	\$	22,393	\$ 22,393
Parcel Taxes	\$	55,549	\$ 56,262
Conditional Federal transfer - Gas Tax	\$	426,672	\$ -
Interest on Capital Reserve	\$	-	\$ 1,781
Sales of service	\$	110,000	\$ 111,658
	\$	615,114	\$ 192,750

<u>Expenses</u>		
Operating Costs	Budget 2015	YTD 2015
2015 Capital contribution	\$ -	57,330.11
ACRD Administration	\$ 14,000	\$ 14,000
ACRD Salaries	\$ 23,000	\$ 22,950
Engineering	\$ 5,000	\$ 2,367
Hydro	\$ 4,000	\$ 3,194
Insurance	\$ 6,400	\$ 3,178
Internet/computer	\$ 150	\$ 1,826
License & permits	\$ 450	\$ 369
Maintenance contractor	\$ 39,000	\$ 36,275
Office supplies	\$ 400	\$ 169
Propane	\$ 1,000	\$ 1,111
Propane tank rental	\$ 300	\$ 6,093
Repairs & maintenance	\$ 10,000	\$ 3,021
SCADA	\$ 4,000	\$ 1,475
Supplies	\$ 25,000	\$ 24,464
Telephone	\$ 1,000	\$ 943
Training	\$ 500	\$ 150
Travel	\$ 700	\$ 535
New Connection		\$ 2,172
Water monitoring	\$ 6,000	\$ 5,230
Total Operating Costs	\$ 140,900	\$ 186,852

<u>Capital Costs</u>		
Beginning Balance	215,980	215,980
Interest	2,200	1,781
Contributon from 2016 Parcel Tax	55,549	56,262
Gas Tax Contribution	426,672	-
Gas Tax expenditures	- 426,672	-
Misc work	- 40,000	
Water treatment pilot	-	5,541
Pumphouse upgrades	-	6,956
Reservoir Cleaning	-	5,886
Tower Road upgrade	-	1,481
Total Capital Costs	233,729	254,159

Federal Grant in Lieu of Taxes

	Amount per Area
Area A	5,431.14
Area C	4,571.20
Area D	1,373.36
Bam Fire/Parks	2,145.54
SL Fire/Parks	1,974.32
SL Multiplex	54.01
BWS	929.89
	16,479.46

	Area A Req	Area A %	Area A Fed GILT	Area C Req	Area C %	Area C Fed GILT	Area D Req	Area D %	Area D Fed GILT	Total Fed GILT
E911	9,766.00	5.08%	276.13	11,887.00	5.63%	257.20	42,485.00	6.54%	89.86	623.19
General	31,607.00	16.45%	893.68	38,421.00	18.19%	831.33	137,299.00	21.14%	290.39	2,015.41
Reg Parks	815.00	0.42%	23.04	986.00	0.47%	21.33	3,522.00	0.54%	7.45	51.83
Reg Plan	4,247.00	2.21%	120.08	5,166.00	2.45%	111.78	18,463.00	2.84%	39.05	270.91
Building	13,379.00	6.97%	378.29	16,316.00	7.72%	353.04	58,316.00	8.98%	123.34	854.67
EA Admin	4,808.00	2.50%	135.95	5,384.00	2.55%	116.50	20,862.00	3.21%	44.12	296.57
Rural Plan	25,138.00	13.09%	710.77	30,580.00	14.47%	661.67	109,276.00	16.83%	231.12	1,603.57
VIRL	40,218.00	20.94%	1,137.16	43,051.00	20.38%	931.52	167,717.00	25.83%	354.73	2,423.40
AV Emerg	-	0.00%	-	-	0.00%	-	25,980.00	4.00%	54.95	54.95
AVLF	60,000.00	31.24%	1,696.49	-	0.00%	-	-	0.00%	-	1,696.49
AVRA	-	0.00%	-	-	0.00%	-	10,919.00	1.68%	23.09	23.09
Custom Trans	-	0.00%	-	-	0.00%	-	48,594.00	7.48%	102.78	102.78
LBA		0.00%	-	39,701.00	18.79%	859.03	-	0.00%	-	859.03
WC Emerg	2,106.00	1.10%	59.55	2,198.00	1.04%	47.56	-	0.00%	-	107.11
WCLF	-	0.00%	-	17,573.00	8.32%	380.24	-	0.00%	-	380.24
SL Animal	-	0.00%	-	-	0.00%	-	1,251.00	0.19%	2.65	2.65
SL Noise		0.00%	-	-	0.00%	-	4,649.00	0.72%	9.83	9.83
	192,084.00	100.00%	5,431.14	211,263.00	100.00%	4,571.20	649,333.00	100.00%	1,373.36	11,375.70

	Area A Req	Area A %	Area A Fed GILT	Area C Req	Area C %	Area C Fed GILT	Area D Req	Area D %	Area D Fed GILT	Total Fed GILT
Bam Parks	9,448.00	9.26%	198.77	-	-	-	-	0.00%	-	198.77
BVFD	92,535.00	90.74%	1,946.77	-	-	-	-	0.00%	-	1,946.77
SL Parks	-	0.00%	-	-	-	-	91,190.00	25.19%	497.35	497.35
SLVFD	-	0.00%	-	-	-	-	270,803.00	74.81%	1,476.97	1,476.97
-	101,983.00	100.00%	2,145.54	0.00	0.00%	-	361,993.00	100.00%	1,974.32	4,119.86

SL Multiplex

BWS

54.01 929.89

16,479.46

Bamfield Water system - Filtration Plant costs & Long term impacts Initial upfront costs of a plant - PRELIMINARY O&M COST ESTIMATE - CLASS C (+/- 30%)

- \$ \$ \$ \$ 1,534,000.00 Capital Cost
 - - 32,300.00 Annual operating cost
 - 23,600.00 Capital replacement contribution for plant
 - 232.00 Parcels for tax

	No Grant	Use Gas Tax		Build Canada 2/3	
	No Grant			grant	
Grant funds	\$-	\$ 426,672	*	\$ 1,022,667	
Cost to BWS	\$ 1,534,000	\$ 1,107,328		\$ 511,333	
	30 years, @ 3.5%	30 years, @ 3.5%		30 years, @ 3.5%	
	26,845.00	19,378.24		8,948.33	
	56,560.62	40,828.66		27,029.63	
	83,405.62	60,206.90		35,977.96	

* Current Gas Tax Allocation - additional request will be considered from ACRD EA directors

<u>Operational Costs</u>				
Current operational costs	135,000.00	135,000.00	135,000.00	
Additional operational costs	32,300.00	32,300.00	32,300.00	
Current average water fee revenue	360.00	360.00	360.00	
Increase required	161.50	161.50	161.50	
Revenue per quarter required	130.38	130.38	130.38	
Capital Costs				
Current Capital contribution	55,216.00	55,216.00	55,216.00	**
DAF plant capital contribution	23,600.00	23,600.00	23,600.00	
Annual MFA payment	83,405.62	60,206.90	35,977.96	
Current Parcel tax	238	238	238	
Required parcel tax for MFA and				
replacement	699	599	495	

** If Build Canada funding is secured Gas tax will be reallocated to other capital needs

If we factor a 2% increase per year for supplies - status quo

	1 year	5 year	10 year
Annual Water Tools	367.20	397.47	438.84
Capital Contribution	242.76	262.77	290.12
Cost per qua	rter 91.80	99.37	109.71
If we factor a 2% increase per year fo	or supplies - No grant		
Annual Water Tools	531.93	575.78	635.71
Capital Contribution	713.22	772.01	852.36
Cost per quater with treatment pl	ant 132.98	143.94	158.93
If we factor a 2% increase per year fo	r supplies - Gas Tax used		
Capital Contribution	611.22	661.61	730.47
If we factor a 2% increase per year fo	or supplies - Build Canada gi	rant	
Capital Contribution	504.70	546.30	603.16

213 - 669 Ridley Place Delta, British Columbia V3M 6Y9 www.delpro.net T 604.517.5599 F 604.517.5598

		QUOTATION	REF No.	DVDQ6738
То:	Alberni-Clayoquot Regional District Dan Fredlund		Date:	Dec 22, 2015
	3008 5th Ave Port Alberni, BC V9Y 2E3		Account Manager:	Jamie Perkins
Phone:	(250)723-9291		Prepared By:	Jamie Perkins jamiep@delpro.net

Email: daniel.fredlund@acrd.bc.ca

Expiration	Payment Terms	FCA	Delivery
Jan 21, 2016	NET 30 days	Burlington, ON	4-6 weeks

Line	Qty	Description	Unit Price	Ext. Price
1	1	ABB 4690 Series Turbidity Analyzer PN: 469011112211STD Analyzer Type - Wall Mount (Gland Fittings) Voltage - 115 V AC Communications - Standard (1 Analogue Output) Sensor Type - Flow through system: ISO 7027 Compliant Sensor Range - 0 to 40 NTU with auto-clean Dry Secondary Standard - Low Range (<5 NTU) Sensor Cable Length - 1m	\$3,873.00	\$3,873.00
			Total	\$3,873.00

Taxes Extra

Accurate, reliable turbidity measurement

Flow-through turbidity design

 Fast response to process turbidity changes due to minimal sample residence time

Automatic sensor cleaning

6

- Reduces maintenance requirements
- Optimizes performance sensitivity

Secondary standards for calibration verification

- Accurate, repeatable, simple, safe
- Realize significant cost savings by reducing the use of primary standards

Reliable and accurate measurement

- Ultralow back scatter for accurate measurement of low turbidity values
- Automatic bubble rejection to compensate for erroneous readings due to degassing

ABB's 4690 range of turbidity systems

The measurement of turbidity is a critical measurement in drinking water as it is used to indicate water quality and filtration effectiveness (for example, whether disease-causing organisms are present).

ABB's 4690 Range of turbidity systems have been designed specifically for the measurement of turbidity throughout the potable water treatment process.

Whichever of the two measurement ranges you choose, low range (0 to 40 NTU) or higher range (0 to 400 NTU), you can benefit from reliable, accurate turbidity measurement with automatic optical cleaning and dry standard calibration verification.

Applications

Typical applications for the 4690 range of flow-through turbidity systems in potable water treatment include:

- Raw water / source monitoring
 Provides an indication of the solids loading entering the treatment plant to enable adjustment of the coagulant dose.
 Monitoring clarified water
 - Clarifier supernatant turbidity measurement monitors clarifier efficiency to provide early warning of floc blanket break-up or incorrect coagulant dosing.
- Filter backwashing control Monitors the filter backwash curve to minimize clean water usage.
- Monitoring of filtered water

Ensures correct operation of the filters and guards against turbidity breakthrough.

Monitoring of final drinking water quality
 Provides a final quality check after disinfection before distribution.

For higher turbidity applications or for turbidity measurement in open channels and tanks please refer to ABB's 4670 range of turbidity systems (data sheet DS/4670–EN).

Fig. 1: Typical turbidity monitoring application

4690 turbidity system overview

Reliable measurement

ABB's 4690 range of turbidity systems have been designed for reliability, ease-of-use and maintenance simplicity.

Measurement technique

The 4690 range of turbidity sensors utilize a flow-through nephelometric design compliant to the ISO* 7027 standard.

Water flows continually through the sensor body. Light directed by the emitter assembly passes through the sample where it is scattered by any suspended particles present in the sample. This scattered light is detected by the sensor receiver assembly that is placed at a 90° angle to the incident beam.

The ultralow back scatter allows for very accurate readings as only light scattering due to turbidity is measured. This is especially important when measuring low turbidity values. Due to the short sample residence time in the flow cell the system is able to respond much faster than many competing systems.

* International Organization for Standardization

Fig. 2: Nephelometric turbidity monitor

Automatic cell cleaning

The 4690 range of turbidity sensors feature an auto-clean system. This feature consists of a mechanical wiper assembly that physically wipes clean the optical cell at user-programmable intervals from every 15 minutes up to every 24 hours.

The highly efficient automatic cleaning process overcomes the problem of optical fouling and ensures that performance can be maintained for long periods (up to 6 months) without the need for manual intervention.

Fig. 3: Auto-clean wiper unit

Automatic bubble rejection

Turbidity readings can be affected by short-term spikes, usually due to the effect of the sample degassing. The 4690 analyzer has an automatic bubble rejection feature that, when enabled, applies a digital filter to the measured results removing any spurious high reading.

Optional external debubbler

Any bubbles present in the sample give false turbidity readings. For applications where bubbles are likely, it is recommended that the optional external debubbler assembly is used to supply a constant head of debubbled sample to the sensor.

Simple to calibrate

A key feature of the 4690 turbidity systems is the dry secondary calibration standard that simplifies routine instrument verification and removes the need for the use of chemical standards.

Both low- and high-range secondary standards are available so that the analyzer calibration can be verified at a level that is suited to the application. Each secondary standard is supplied factory-certified against a primary formazine standard.

Fig. 4: Dry secondary standard

The benefits of using ABB's Secondary Standards include:

- Minimum analyzer downtime
 Simple and fast procedure to verify analyzer performance.
- Low cost of ownership
 Reduce usage of consumable chemical standards and the time taken to prepare such standards.
- Minimise employee's exposure to Formazine
 Formazin is highly toxic and a suspected carcinogen.
 Repeatable and reliable
 - Removes any chemical standard preparation errors.
- Simple to use

The secondary standard is simply inserted into the sensor assembly optical light path allowing the pre-calibrated optomechanical filter to divert a fixed quantity of light to the detector that corresponds to the calibrated turbidity value. Rotation of the dry standard blocks the light path enabling a zero turbidity calibration to be made.

Fig. 5: Dry standard calibration

Simple to maintain

The 4690 turbidity sensing systems are designed to be as maintenance-free as possible. The inherent product design and auto-clean feature minimize the amount of maintenance required to external cleaning of sample lines and periodic replacement of the wiper blade and light source.

The sensor features ABB's patented light replacement system, a unique feature that enables bulb replacement in the field in seconds. Each bulb is supplied fully protected in a patented assembly with integral light guide so you never come into direct contact with the bulb. This not only protects the bulb, ensuring maximum lamp life, but also makes replacement very simple and fast as it just clicks into place.

Fig. 6: Replacing the light source

Taak	Recommended			
Task	frequency			
Visual checks – sample flow, leaks	Weekly			
Calibration verification ¹ with secondary standard ² - as per regulatory guidelines	Monthly			
Calibration ³ with primary standard ⁴ – as per regulatory guidelines	Quarterly			
Replace wiper blade	Annually			
Replace LED Light Source (ISO 7027)	Every 5 years			

1. Calibration Verification

A procedure used to check whether or not the calibration of the analyzer is within certain limits.

2. Secondary Standards

Standards that the manufacturer (or an independent testing organization) has certified provide analyzer calibration results equivalent (within certain limits) to the results obtained when the instrument is calibrated with a primary standard.

3. Calibration

A procedure which checks or adjusts an analyzer's accuracy by comparison with a defined standard or reference.

4. Primary Standards

Turbidity standards that are traceable and equivalent to the reference turbidity standard, within statistical errors. Formazine is the most commonly acceptable form of primary standard. Primary standards are used to calibrate a turbidity meter directly or to calibrate a secondary standard.

4690 sensor specification

Range

Low range 0 to 40 NTU High range 0 to 400 NTU

Measurement principle

90 ° scattered light measurement. Compliant to ISO 7027

Maximum linearity

Typically <1.0 %

Accuracy^{1, 2}

Low range version ± 2 % of reading High range version ± 5 % of reading or 0.3 NTU

Repeatability³

0 to 200 NTU: <1 % 200 to 400 NTU: 2 %

Limit of Detection⁴

Low range version: 0.003 NTU High range version: 0.3 NTU

Response time

T90 < 1 min at 1 l/min⁻¹ (0.26 gall [US]/min⁻¹)

Flow rate

0.5 to 1.5 l/min (0.13 to 0.39 gall [US]/min)

Integral wiper cleaning system

Programmable operational frequency every 0.25 hour, 0.5 hour, 0.75 hour or multiples of 1 hour up to 24 hours

Sample operating temperature 0 to 50 °C (32 to 122 °F)

Sample pressure Up to 3 bar (43.5 psi)

Ambient operating temperature 0 to 50 °C (32 to 122 °F)

Ambient operating humidity

Up to 95 % RH

Wetted parts - materials used

Cell body unit

- Black POM (Polyoxymethylene) Copolymer
- Spectrosil 2000 fused silica
- Nitrile (O-ring)
- Epoxy preform (cured): Uni-forms 5034-00
- Polyamide 6
- Nickel plated brass
- Teflon

Wiper unit

- Black Polycarbonate, 10% Glass Fibre filled Lexan 500R
- Stainless Steel (SS 316 S13/S11) w/ Chemical Black MIL-C13924 class 4
- Silicone grease (WRC Approved): Unisilkon L 250 L
- 2-part Epoxy Adhesive (cured): DELO AD894
- EPDM (ethylene propylene diene Monomer) black

¹Maximum measured error across full measurement range (typical, limited by uncertainty in Formazine standards).

²Tested in accordance with IEC 61298 Parts 1-4: Edition 2.0 2008-10. ³Tested in accordance with MCERTS: Performance Standards and Test Procedures for Continuous Water Monitoring Equipment. Version 3.1: Environment Agency 2010.

⁴Tested in accordance with BS ISO 15839: 2003.

4690 analyzer specification

General Measured value 5-digit x 7-segment backlit LCD

Information 16-character, single line, dot matrix, backlit LCD

Units of measurement All models: NTU and FNU mg/l and ppm for high range models

Accuracy ±0.2 % of reading, ±1 digit

Linearity ±0.1 % FSD

Auto-clean timing (7998011, 7998012) Programmable 15 min, 30 min, 45 min or 1 hour up to 24 hours in 1 hour increments

Environmental Data Operating temperature limits -20...55 °C (-4...131 °F)

Storage temperature limits -25...55 °C (-13...131 °F)

Operating humidity limits Up to 95 % RH non-condensing

Power Supply Voltage requirements 100...130 V, 200...260 V, 50/60 Hz

Power consumption < 6 VA AC

Error due to power supply variation Less than 0.1 % for +6 % –20 % variation from nominal supply Insulation Mains to earth (line to ground) 2 kV RMS

Relay Outputs and Set Points No. of relays Two

Relay contacts Single pole changeover Rating 250 V AC 250 V DC max. 3 A AC, 3 A DC max. Loading (non-inductive) 750 VA 30 W max. (inductive) 750 VA 3 W max.

Insulation 2 kV RMS contacts to earth (ground)

No. of set points Two

Set point adjustment Programmable

Set point hysteresis ±1 % fixed

Local set point annunciation Red LED

Retransmission No. of retransmission signals

One fully isolated programmable 0...10 mA, 0...20 mA or 4...20 mA Optional second current output

Accuracy

 ± 0.25 % FSD ± 0.5 % reading

Resolution

0.1 % at 10 A, 0.05 % at 20 mA

Max. load resistance

750 Ω (20 A max.)

Mechanical Data Model 4690 Wall- / Pipe-mount transmitter

Wall-mounting

Protection	IP66 / NEMA4X
Dimensions	160 mm (6.30 in.) wide x 214 mm (8.43 in.) high x
	68 mm (2.68 in.) deep
Weight	2 kg (4½ lb)

Model 4695 Panel-mount transmitter

(¼ DIN)
IP66 / NEMA4X front
96 mm (3.78 in.) wide x 96 mm (3.78 in.) high x 191 mm (7.52 in.) deep
1.5 kg (3¼ lb)
$92^{+0.8}_{-0}$ mm x $92^{+0.8}_{-0}$ mm (3.62 ^{+0.03} _{-0} in. x 3.62 ^{+0.03} _{-0} in.)

Overall dimensions

4690 turbidity sensor (with optional wiper unit)

Dimensions in mm (in.)

4690 turbidity sensor (without optional wiper unit)

Dimensions in mm (in.)

4690 wall- / pipe-mount analyzer

Dimensions in mm (in.)

Optional de-bubbler assembly

Dimensions in mm (in.)

4695 panel-mount analyzer

Dimensions in mm (in.)

Electrical connections

Panel-mount analyzer connections

Note.

- 1. A second retransmission output is available if the RS485 serial communications facility is not used.
- 2. If 'Test Cleaner' is selected during analyzer configuration, Relay 2 becomes 'Failed Wiper Alarm' relay.

Typical system installation schematic

With optional de-bubbler

Dimensions in mm (in)

Ordering information

Turbidity system	4690/	Х	Х	Х	Х	Х	Х	X	Х
Transmitter type									
Wall-/ Pipe-mount (gland fittings)		1							
Wall- / Pipe-mount (conduit)		2							
Panel-mount		5							
Voltage			1						
115 V AC			1						
230 V AC			2						
Communications and IO				1					
Standard (1 analog output)				1					
Additional analog output				2					
Modbus				3					
Sensor type									
Flow-through system (ISO 7027 compliant)					1				
Sensor range						-			
0 40 NTU (without auto-clean)						1			
0 40 NTU						2			
0 400 NTU						3			
Secondary dry calibration									
Not included							0		
Low range (<5 NTU)							2		
High range (50 100 NTU)							3		
Sensor cable length									
No sensor cable supplied								0	
1 m (3.3 ft)								1	
5 m (16.4 ft)								2	
10 m (32.8 ft)								3	
Manual									
English									1

Accessories

Description	Part number
De-bubbler assembly	7997 500
Dry standard HIGH (for ISO infrared LED version)	7998 048
Dry standard LOW (for ISO infrared LED version)	7998 047

Contact us

ABB Limited

Process Automation

Oldends Lane Stonehouse Gloucestershire GL10 3TA UK Tel: +44 1453 826 661 Fax: +44 1453 829 671

ABB Inc.

Process Automation

125 E. County Line Road Warminster PA 18974 USA Tel: +1 215 674 6000 Fax: +1 215 674 7183

www.abb.com

Note

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents in whole or in parts – is forbidden without prior written consent of ABB.

Copyright© 2014 ABB All rights reserved

3008 Fifth Avenue, Port Alberni, B.C. CANADA V9Y 2E3

Telephone (250) 720-2700 FAX: (250) 723-1327

MEMORANDUM

- To: Bamfield Water Committee
- **From:** Andrew McGifford CPA, CGA, Acting Manager of Finance/Manager of Environmental Services

Date: January 15, 2016

Subject: 2016 Budget Projects

2015 Capital

In the 2015 Capital Budget there was \$40,000 allocated to various works in the water system.

The follow projects were undertaken:

The MOTI had planned the repair of the culvert on Tower Road and the ACRD was able to take advantage of these works to complete the Tower Road upgrade for approximately \$1,500 plus a day of the Leadhand water technician's time. The estimated cost of this upgrade was \$20,000.

The pilot project had some cost that continued into the 2015 year in the amount of \$5,541. The Pumphouse required approximately \$7,000 in upgrades, the reservoir was cleaned for \$5,886.

2016 Capital

Since the 2013 Bamfield Water System study was undertaken in 2013 many of the items identified by Koers have been completed. The final items on the list are the Water system Operation and Maintenance Plan (O&M) which was estimated at \$15,000 and the Treatment plant.

The O&M plan costs will consist of staff, contractor and engineer time and we should try and formalize our plan. Currently the ACRD is starting the asset management plan and these plans should tie into that financial process. We need to plan on allocating money towards the 2016 or 2017 capital plan, Koers has recommended \$15,000 for this process.

Other small capital items include:

- 1) Replacement of the water meters in an organized fashion lifetime of a meter is 10 15 years. Would we look at completing 10 per year?
- 2) Backup power at rechlorination station
- 3) Red & White Valve replacement plan
- 4) Communications and power during outages between reservoirs and the pumphouse improve back up power and communications.
- 5) The chlorine shed structure improvements.

The capital budget should be set for these various items.

Operations 2016

The 2015 budget has ended up very close the plan, costs continue to rise and the rate increase should be reviewed in the near future. The amount that the other water systems within ACRD are charged quarterly is \$155 per quarter in Beaver Creek and \$181.25 in Millstream. Beaver Creek has a maximum of 108 cubic meters before overages, and Millstream is not metered.

Submitted by:

Andrew McGifford, Acting Manager of Finance